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ABSTRACT
Using egocentric video and head motion data from 67 or-

der picking tasks (244 picks;149 orders), we learn visual mod-
els of the 10 objects picked to fulfill the orders. Boundary
segmentations of the four actions (pick, carry, place, carry
empty) of order picking had an average test RMSE of 1.11
seconds using computer vision and 5.53 seconds using only
head motion (≈39.8 seconds/task). The 10 objects were clus-
tered with 93.8% accuracy using weak supervision provided
by the picks (which could occur in any order) specified in
the tasks. We apply the 10 resulting models on indepen-
dent test data to recognize three objects involving 50 tasks
(185 picks;98 orders) and 10 objects involving 10 tasks (35
picks;24 orders). Accuracy was up to 90.3% and 69.1%, re-
spectively. We propose order picking as a practical use case
of egocentric Symbiotic AI, where ambient sensing is used
without explicit supervision to train an agent which can then
help the user improve task speed and accuracy.1

Index Terms— ambient AI, symbiotic AI, wearable sens-
ing, egocentric vision

1. ORDER PICKING AIDED BY SYMBIOTIC AI

Symbiotic Artificial Intelligence (Symbiotic AI) is the idea
that humans and AI may “live” alongside one another for mu-
tual benefit. For example, the AI may watch a human part-
ner’s actions over time, learn how to do an activity correctly,
and then help speed the activity and monitor for errors. To
prove this concept in a practical scenario that has commercial
relevance, we focus on the order picking problem.

Order picking is the process of selecting inventory items
from pick bins and sorting them into place (order) bins for
distribution. Roughly US$1 trillion in goods are distributed
from almost a million warehouse sites each year. As much
as 55% of all operating expenses for a warehouse are from
the cost of order picking [1]. Additionally, 80% of all or-
der picking in warehouses is done manually as robots do not
yet have the dexterity to handle the variety of parts on most
pick lines. As errors can lead to stopped assembly lines or
customer dissatisfaction, manual pickers verify their picks by
scanning barcodes either on the object itself or, if the object is

1Code & data: github.com/czming/ai-through-symbiosis

too small, on the bin containing the object. However, the bar-
code scanning process can almost double the amount of time
to complete a pick, cause physiological strain on the picker
and does not eliminate all errors [2]. According to the CEO
of Ox, a logistics company specializing in order picking using
wearable computers, replacing barcode scanning with com-
puter vision to identify the object as it is being picked would
significantly improve both speed and accuracy [3].

Many industrial wearable computers, such as Google
Glass EE2 and Vuzix M300, have cameras that could be
used for this task. However, manually creating visual models
of 100,000 objects in a warehouse would be expensive and
onerous. Instead, can a wearable computer observe a picker’s
actions while fulfilling orders and automatically create the
needed models? For example, the picker completes a task,
selecting objects from a rack of pick bins for several orders
and then placing those objects in place bins with one place
bin for each order. If we can use action segmentation to seg-
ment carrying the object from picking and placing, we can
then segment the hand with the object(s) and create a visual
model of the object. Even though there may be several ob-
jects involved in the task and the picker may do the picks out
of order, we can try all combinations of possible mappings of
visual models to the picks in the task and select the mapping
that provides the greatest consistency (and least variance in
the visual model). Since pickers are often over 99% correct
in their picks, incorrect picks will have little effect on the
visual model over time. In this manner, a visual model can be
learned with no explicit training, and, as the model becomes
reliable, the system can begin to alert the picker when a pick
may be incorrect. Similarly, if a customer complains about
an incorrect order, the same visual model might be used to
resolve disputes by finding images of the objects being placed
into the customer’s shipment.

Placing sensors throughout a warehouse is impractical
from an expense, deployment and maintenance perspective.
Instead, we focus on adding ambient multimodal sensors
to the picker’s clothing. Specifically, we use a wide field
of view camera with an inertial measurement unit mounted
on the picker’s forehead facing toward the hands to give a
egocentric view. In industry, a head worn wearable com-
puter with display and camera (such as Glass EE2) might be
retrofitted with a small mirror or fish-eye lens so as to be able
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Fig. 1: Pipeline for generating visual models of objects from observing picker behavior.

to track the hands.
In the 1990s, Starner [4] hypothesized that wearable com-

puters that “see” and “hear” what the user does would be able
to leverage this egocentric perspective to sense general con-
text from the first-person perspective of the user and, in turn,
learn to help the user in everyday scenarios. Initial work on
such symbiotic AI showed progress in discovering semanti-
cally meaningful locations and predicting movement between
them [5], face recognition [6] and social engagement [7].
Roboticists have also been interested in wearable computing
and first person perception [8] with early work focusing on
learning human actions and mapping them on to humanoid
robots [9]. However, the last decade has shown accelerating
progress as wearable sensors and machine learning methods
have advanced [10, 11, 12], especially for set-supervised ac-
tion segmentation [13, 14, 15]. Most recently, with the release
of the Ego4D dataset in 2022 [16], there has been a surge of
interest in data gathered from a first-person viewpoint. Ego4D
identifies several types of questions that might be posed with
such data related to episodic memory, hand and object state,
audio/video diarization, social interactions, and forecasting.
Few of these dataset are both motivated by immediate, prac-
tical commercial use cases and have enough repetition such
that unsupervised or weakly supervised learning can be used
to recover visual object models.

2. VISUAL MODEL LEARNING PIPELINE

Fig. 1 shows our pipeline for deriving a visual model for each
picked object and then using that model to recognize objects
in unseen picking activities. The pipeline produces action
segmentations and pseudo-label assignments from action sets
and ambient sensor data.

Our order picking “warehouse” was based on those found
in automobile manufacturing lines but simplified to allow for
rapid data generation. The picking shelving unit has 12 pick
bins, each with a unique object. A shelving unit with place
bins for three orders is about five steps from the pick bins.
Both shelves had AruCo markers [17] associated with the
bins, similar to the barcodes found in industrial scenarios.

Fig. 2: Predicted action segmentations

We generate a set of picklist tasks such that each picklist
contains an average of 3.62 objects to be picked with at most
12 possible orders in which the objects could be picked (ig-
noring repeated object labels). Tasks are randomly sampled
for each of three pickers (37, 20, and 20 tasks) to complete.
Each picker is fitted with a GoPro Hero 10 capturing 30FPS
video at 4k and accelerometer and gyroscope data at 200Hz.

We detect ArUco markers [17] in each image frame us-
ing the OpenCV library [18]. To differentiate between picks
and places, we give ArUco markers associated with pick bins
a score of +1 and markers associated with place bins a score
of -1. The sum is a feature for the next stage of processing
by hidden Markov model (HMM). An example can be seen
in Figure 1B where a positive number indicates a likely pick,
zero indicates a probable carry, and negative numbers are as-
sociated with places. Head tilt and yaw is extracted from
the gyro data and downsampled to match the rate produced
from the lower frequency ArUco data. We use the Mediapipe
Hands library [19] to extract hand keypoints from the image.
We crop a rectangular portion of the image which contains
the entire hand as seen by the blue bounding box in Fig. 1B.
We use a Gaussian convolution step to smooth our features
across adjacent frames. After preprocessing and smoothing
the data, we employ HTK, a HMM toolkit [20] and tooling
from GT2K [21] to create action segmentations.

HTK allows for the specification of a rule-based gram-
mar, which is well-suited to the highly structured task of or-
der picking (i.e., “pick,” “carry,” “place,” and “carry empty”).
Picklist tasks are specified as objects and place bins, which
implies a set of sequential actions if one ignores the identity
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of the objects themselves. For example, a picklist with two
objects would have the predetermined sequence of actions:
pick, carry, place, carry empty, pick, carry, place, carry empty.
These predetermined sequences enable a more precise align-
ment of observations to the known sequence of hidden states
through forced-alignment. In this manner, a HMM for each
of the four general actions is created (ignoring the identity of
the object involved). When testing on an unseen sequence,
Viterbi decoding is used to find the most likely segmentation
of actions, outputting timestamps for action boundaries. Fig.
2 shows example output of the decoding process. Using cross
validation with an 90% to 10% train-to-test split to ensure a
“fair” test, we create segmentation boundaries for each of the
picklist tasks and use these cross validation splits for training
and testing the color histogram visual object models in the
next section. The HMM topology is a six-state left-to-right
topology with no skip states. Transitions are initialized with
equal probability for self-loops and moving forward. Emis-
sion probabilities are single gaussians per dimension initial-
ized with mean 0 and standard deviation of 1.

We use the boundaries obtained above to identify se-
quences of frames where the picker is carrying the object in
the hand (“carry” frames). To find a representation of each
sequence of carry frames, we take the average histogram of
hue values (each bin representing 2 degrees of hue, totalling
180 bins) of pixels within the segmented hand portion of the
image across the frames in the sequence. To remove vari-
ability due to skin color of the pickers’ hands, we remove
the average histogram of hue values across the sequence of
“carry empty” hand images. We use this net histogram of hue
values as a vector to represent each carry frame sequence.

Next, we must obtain labels for the object being carried in
each carry frame sequence. We first randomly assign object
labels to carry frame sequences with the constraint that the
picks must be consistent with the picklist task (i.e. counts of
each object must match those in the picklist). We improve on
the clustering iteratively using a simulated annealing method
by looking at the distance of vectors from their cluster mean,
normalized by the standard deviation of points in the cluster
along each respective dimension. To reduce the time com-
plexity of each comparison, we reduce the number of dimen-
sions of hue that we compare from the original 180 bins to
12 bins. In each iteration we select a random pick from each
picklist. Then, we iterate through all the other picks and see
if there is another object where swapping the labels on the
two objects reduces the normalized distance of the vectors
from their cluster means, where the cluster means are com-
puted without the inclusion of the two picks under evaluation.
If the normalized distance is not reduced by any potential
swaps with objects in the picklist, we use simulated anneal-
ing to assign a probability p of swapping to avoid local min-
ima. We reduce p proportionately with the number of epochs.
When deciding with which specific pick to swap, we assign
the probability based on the distance reduction achieved by

the different potential swaps. We repeat this method across
all the different picklists and for n = 500 epochs.

The resulting object model consists of the average his-
togram of hue values across the various sequence of frames
where the picker is predicted to be carrying the same type of
object. At inference time, we predict the object type whose
model has the closest hue histogram to the test object.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental setup: For the 77 10-object picklist tasks col-
lected in Section 2 we split our dataset into a train/validation
/test split of 60/7/10. Hyperparameter tuning is performed
using three fold cross-validation of the models being trained
on 60 tasks and tested on 7 validation tasks. The 67 tasks
consisted of 244 picks and 149 orders. The final 10 tasks
(35 picks;24 orders) in the independent test set are used to
evaluate the performance of the representations learned dur-
ing training. A seperate set of 50 tasks (185 picks;98 orders)
using 3-object picklists provide another test of the system.
Results: In Fig. 3, we present the results on our training set on
our evaluation metrics of accuracy for label assignment, rep-
resented using a confusion matrix. We define accuracy as the
average of NTP

NP
across all object classes, where NTP is the

number of accurately assigned labels and NP is the number
of true labels. We include root mean square error (RMSE)
as our metric for boundary detection accuracy, which is the
RMSE between the predicted boundary timestamp and the
actual boundary timestamp between different actions, and is
represented by a histogram of RMSE achieved on each pick-
list when it was in the test set as part of k-fold validation,
where k = 40 and with a 90% − 10% train-test split. We in-
clude a histogram of the RMSE values obtained on different
different picklists when using i) ArUco score and ii) head mo-
tion data as the output from the HMM for training in Fig. 3.
On the training set, our model achieves a clustering accuracy
of 93.8% from the unordered set action labels. In Fig. 4, we
include prediction results of the object models learnt on our
two test sets: i) ten 10-object picklists ii) 50 three-object pick-
lists, and a visualization of the average hue histogram of each
object type in Fig. 5. On the ten picklists with 10 objects,
we have an average RMSE of 1.11 seconds for our boundary
predictions, with an accuracy of 69.1% when we constrain
predictions to the set of classes that appear in the picklist and
56.6% without constraints. On the testing set with three ob-
jects, we achieve an accuracy of 90.3% with an RMSE of
1.53 seconds after adjusting for three outliers that had errors
greater than three standard deviations away from the mean.

4. DISCUSSION AND FUTURE WORK

The 93.8% 10-object clustering accuracy and the 3-object test
set accuracy demonstrate that the automatic creation of vi-
sual models by observing actions made during order picking
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Fig. 3: Left: Histogram of boundary errors (67 picklists total)
where red represents segmentations using head motion and
blue represents ArUco markers. Right: Average confusion
matrix of clustering across three folds of the training set.

Fig. 4: Top: Object predictions on 3-object task. Middle: 10-
object predictions constrained to the types of objects in the
task. Bottom: 10-object predictions with no constraints.

Fig. 5: Histograms of hues and saturations for the ten object
classes based on predicted boundaries using ArUco markers.

is possible. While 90.3% and 1.53 sec accuracy in finding
and labelling picks may be sufficient to aid in providing proof
to a disgruntled customer that the correct objects were deliv-
ered, it is not sufficient for alerting a picker that a task was
picked incorrectly in real-time. Perhaps more data is needed
to provide better models? The difference in accuracy the 10-
object tasks (constrained by the set of unique classes in the
task picklist versus not constrained) suggests under training
or a model that is not sufficiently expressive for the task.

To this end, we are gathering more data and investigat-
ing two different approaches: an end-to-end deep learning
approach using a triplet loss and Siamese network method
inspired by FaceNet [22] to learn embeddings for objects be-
fore using our clustering step to map embeddings to object
classes and an approach that uses the labels predicted for each
carry frame sequence and trains a ResNet-18 [23] model us-
ing training examples based on those labels. Preliminary re-
sults for the former approach shows 81.3% clustering accu-
racy while the latter approach attains a prediction accuracy of
75.7% on our 10-object test set.

Another limitation of the current approach is the depen-
dence on hand detection to segment the area of interest, which
limits the applicability of the pipeline to objects with substan-
tial hand occlusion. We are exploring depth-map and optical
flow-based approaches for scale, viewpoint, and illumination
invariance in our approach.

5. CONCLUSION

Our study demonstrates the potential of egocentric Symbiotic
AI in the context of order picking tasks. With minimal super-
vision, our approach accurately segmented the four actions
of order picking and learned visual models of the 10 objects,
achieving promising accuracy in recognizing the objects in
independent test data. These findings suggest that egocentric
video and head motion data can be leveraged to develop prac-
tical applications for ambient sensing and may enhance the
speed and accuracy of order picking in the future.
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Jiménez, “Automatic generation and detection of highly
reliable fiducial markers under occlusion,” Pattern
Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.

[18] G. Bradski, “The OpenCV Library,” https://
opencv.org, 2000–2021, Accessed: 4 Sep 2022.

[19] Camillo Lugaresi et al., “MediaPipe: A Framework for
Building Perception Pipelines,” arXiv:1906.08172 [cs],
June 2019, arXiv: 1906.08172.

[20] Steve J Young and SJ Young, “The htk hidden markov
model toolkit: Design and philosophy,” 1993.

[21] Tracy Westeyn, Helene Brashear, Amin Atrash, and
Thad Starner, “Georgia tech gesture toolkit: support-
ing experiments in gesture recognition,” in Proceedings
of the 5th international conference on Multimodal inter-
faces, 2003, pp. 85–92.

[22] Florian Schroff, Dmitry Kalenichenko, and James
Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 815–823.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 11,2025 at 21:03:06 UTC from IEEE Xplore.  Restrictions apply. 


